

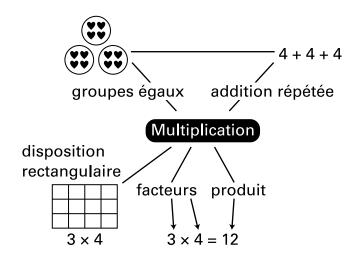
En avant, les maths!

Une approche renouvelée pour l'enseignement et l'apprentissage des mathématiques

CONCEPTS MATHÉMATIQUES

NOMBRES

Multiplication de nombres naturels

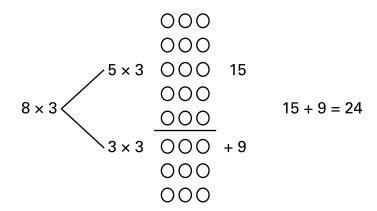

Multiplication. Opération qui représente une addition répétée; combinaison de groupes égaux ou un fait numérique. La multiplication de facteurs donne un produit.

Exemple: 4 et 5 sont des facteurs de 20, car $4 \times 5 = 20$. L'opération inverse de la multiplication est la division : $20 \div 5 = 4$.

Produit. Quantité obtenue lorsque deux nombres ou plus sont multipliés.

Facteur. Nombre naturel qui divise de façon égale un nombre naturel donné.

Exemple: Les facteurs de 12 sont 1, 2, 3, 4, 6 et 12, car tous ces nombres se divisent de façon égale dans une multiplication.


EXEMPLE 1

Au club de voile « Les deux vents », un concours par équipage est organisé pour monter et descendre les voiles le plus rapidement possible. Chaque équipage est composé de 3 personnes et il y a 8 bateaux. Combien y a-t-il de personnes qui participent au concours de montée et descente de voile au club « Les deux vents »?

STRATÉGIE 1

Distributivité à l'aide de la disposition rectangulaire

Je sais que 8×3 équivaut à faire 5×3 et 3×3 , ce qui est plus facile. Je calcule 5×3 qui me donne 15, puis je sais que $3\times3=9$. J'ajoute alors 15 à 9, ce qui me donne 24.

Je peux donc dire maintenant qu'il y a en tout 24 personnes qui participent au concours du club de voile « Les deux vents ».

STRATÉGIE 2

Addition répétée

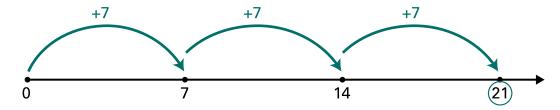
Je sais qu'il y a 3 personnes par bateau et qu'il y a 8 bateaux au total. Je décide de faire une addition répétée, soit : 3+3+3+3+3+3+3=24.

Je vois sur la grille que 8 bonds de 3 font 24, alors je peux affirmer qu'il y a 24 personnes qui participent au concours de montée et descente du voile du club « Les deux vents ».

1	2	3	4	5	6	7	8	9	10
11	12	13	14	(1 5)	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

EXEMPLE 2

Pour réaliser des bateaux miniatures, on a acheté 9 trousses contenant 7 coques et voiles de bateaux chacune. Combien de bateaux peut-on construire?

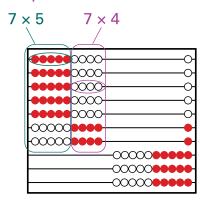

STRATÉGIE 1

Distributivité en décomposant à l'aide d'une droite numérique

Je trouve la multiplication suivante 9×7 assez difficile. Pour simplifier, je décompose le 9 en 3+3+3. Alors je peux faire la multiplication suivante : $(3\times7)+(3\times7)+(3\times7)$.

En 3 bonds de 7, j'arrive à 21. Maintenant que je sais que $3 \times 7 = 21$, je répète l'opération 3 fois, soit :

21+21+21=63.



Alors, il y a la possibilité de construire 63 bateaux miniatures.

Distributivité à l'aide du Rekenrek

Je vais faire la multiplication 7×9 avec le Rekenrek, car j'aurai le même résultat que 9×7 . Je place donc 9 perles à la gauche du Rekenrek sur les 7 premières lignes. Je constate qu'il y a alors 7 tiges de 5 perles et 7 tiges de 4 perles. Je peux calculer plus facilement maintenant ces deux multiplications, puisque 7 groupes de 5 perles font $7 \times 5 = 35$, et 7 groupes de 4 perles font $7 \times 4 = 28$.

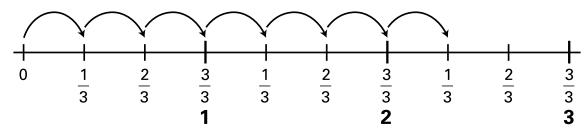
Il me suffit enfin d'additionner 35 et 28. Pour additionner 35 + 28, je vais utiliser la compensation et additionner 33 + 30 (35 - 2 + 28 + 2). C'est plus aisé et ça me donne 63, soit le nombre de bateaux miniatures qu'il est possible de construire

EXEMPLE 3

Chacune des 7 différentes formes de coque pour construire ces bateaux miniatures a un tiers de sa coque peint en bleu. Combien y a-t-il en tout de tiers peints en bleu sur les coques des bateaux miniatures?

STRATÉGIE 1

Addition répétée à l'aide d'une droite numérique


Je sais que la couleur bleue représente $\frac{1}{3}$ de la coque de chaque bateau et qu'il y a 7 coques de bateaux en tout.

Je peux donc dire que cela correspond à l'addition répétée suivante :

7 coques de bateaux
$$\frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3}$$

J'ai donc 7 groupes de $\frac{1}{3}$, que je peux écrire $7 \times \frac{1}{3}$.

Pour m'aider, je représente les 7 bonds de $\frac{1}{3}$ sur une droite numérique.

$$\frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 2\frac{1}{3}$$

$$7 \times \frac{1}{3} = 2\frac{1}{3}$$

Il y a donc $7 \times \frac{1}{3}$ de coques de bateaux peintes en bleu, ce qui correspond à 2 et $\frac{1}{3}$.

STRATÉGIE 2

Addition répétée à l'aide d'un schéma

Pour compter le nombre de tiers, je vais représenter les 7 un tiers de bateaux dans un schéma et faire des regroupements de 3 un tiers de bateaux pour former des nombres entiers.

Les 3 premiers tiers de bateaux forment 1 entier. Les 3 suivants forment un autre entier. Il reste encore $\frac{1}{3}$ alors je peux dire que les 7 bateaux avec $\frac{1}{3}$ de leur coque peinte en bleu font 2 et $\frac{1}{3}$.

3º bateaux	$\frac{1}{3}$	6º bateaux	$\frac{1}{3}$		
2 ^e bateaux	1 3	5º bateaux	<u>1</u> 3		
1 ^{er} bateau	1 3	4º bateaux	$\frac{1}{3}$	7º bateaux	$\frac{1}{3}$